Ir al contenido principal

La teoría póstuma del Dr. Stephen Hawking


En cierto lugar del espacio, hay otros planetas similares a la Tierra donde todavía caminan los dinosaurios y otros donde aún cazan los neandertales.

También otros cuerpos celestes completamente diferentes al nuestro, sin estrellas, soles ni galaxias, pero que se rigen por las mismas leyes de la física que existen en el nuestro.

No, no son ideas para una película de ciencia ficción. Se trata de uno de los postulados de la última teoría del cosmos que propuso Stephen Hawking, publicada recientemente en la revista especializada Journal of High Energy Physics.

Stephen Hawking, el físico británico que revolucionó nuestra manera de entender el universo
5 grandes aportes del prestigioso físico británico Stephen Hawking a la ciencia
El trabajo, enviado a revisión solo 10 días antes de la muerte del físico británico en marzo pasado, ofrece una imagen más simple de lo que sucedió hace 13.800 millones de años, cuando comenzó todo.

Y es que, según la teoría (resultado de una larga colaboración de más de dos décadas de Hawking con Thomas Hertog, un físico belga de la Universidad Católica de Lovaina) la realidad puede estar compuesta de múltiples universos, pero cada uno puede no ser tan diferente al nuestro.

La teoría no solo resuelve una paradoja cósmica de anteriores postulados de Hawking, sino que también señala un camino para que los astrónomos encuentren evidencia de la existencia de universos paralelos, señala Ghosh.

Pero ¿por qué es importante esta teoría y cómo soluciona algunas de las objeciones a postulados anteriores del físico británico?

La paradojas

En la década de 1980, Hawking, junto con el estadounidense James Hartle, desarrolló una nueva concepción sobre los orígenes del Universo.

Dichos postulados resolvieron un problema que arrastraba la ciencia desde las teorías de Einstein, que sugerían que el Universo tuvo sus comienzos hace 14.000 millones de años, pero que no explicaban nada sobre cómo se originó.

El universo tuvo sus orígenes hace 14.000 millones de años tras la explosión del Big Bang, según la teoría de Hawking.
Hartle y Hawking, en cambio, utilizaron una teoría diferente llamada mecánica cuántica para explicar cómo todo surgió de la nada.

El postulado ató un cabo suelto, pero soltó otro: la idea sugería también la posibilidad de que el Big Bang creó no solo un universo, sino un número infinito de ellos.

Algunos, de acuerdo con la teoría de Hartle-Hawking, serían muy parecidos al nuestro y otros sutilmente diferentes, regidos por leyes físicas distintas.

Y aunque suena exagerado, las ecuaciones que utilizaron ambos científicos hacen que estos escenarios sean teóricamente posibles.

Según la teoría, el Big Bang creó muchos universos paralelos.
Sin embargo, también crearon un problema, porque si hay infinitos tipos de universos con variaciones infinitas en sus leyes de la física, entonces la teoría no puede predecir en cuál de ellos nos encontramos.

"Ni Stephen ni yo estábamos contentos con ese escenario", explica Thomas Hertog, quien trató de encontrar una solución a este problema durante 20 años en compañía de Hawking.

"Sugiere que los universos múltiples surgieron al azar y que no podemos explicar mucho más sobre eso. Nos dijimos entre nosotros: 'Quizás tengamos que vivir con eso'. Pero no queríamos darnos por vencidos".

Fue por eso que la última teoría trató de solucionar ese rompecabezas.

En busca de soluciones

Ambos utilizaron nuevas técnicas matemáticas desarrolladas para estudiar otra rama "esotérica" de la física llamada teoría de las cuerdas.

Así lograron poner un poco de orden en la hasta ahora caótica concepción del "multiverso" o universo múltiple.

La nueva teoría de Hawking y Hertog sugiere que solo puede haber universos que tengan las mismas leyes físicas que el nuestro.

La teoría sugiere que es posible detectar los universos paralelos.
Esa conjetura significa que nuestro Universo es típico, por lo que las observaciones que hagan los científicos de él serán significativas para desarrollar ideas sobre cómo surgieron los otros.

"Las leyes de la física que probamos en nuestros laboratorios no existieron siempre, surgieron después del Big Bang, cuando el universo se expandió y se enfrió", explica Hertog.

Esto, según el científico, lleva a que dichas leyes dependan en gran medida de las condiciones físicas en las que se dio el Big Bang.

"Pretendemos obtener una comprensión más profunda de dónde provienen nuestras teorías físicas, cómo surgen y si son únicas", añade.

Una consecuencia tentadora de los postulados, según Hertog, es que podría ayudar a los investigadores a detectar la presencia de otros universos estudiando la radiación de microondas que queda del Big Bang.

No obstante, asegura que no cree que sea posible saltar de un universo a otro.

Al menos no por ahora.

Comentarios

Entradas populares de este blog

¿Qué ocurre en nuestro cerebro cuando morimos?

Un equipo de neurólogos del Charité–Universitätsmedizin Berlin ha descubierto una ola de actividad eléctrica en el cerebro humano denominada "tsunami cerebral" (spreading depression en inglés), que precede al momento de la muerte. Según la investigación, publicada en la revista especializada Annals of Neurology, al examinar la actividad cerebral en nueve pacientes moribundos, los científicos observaron una ráfaga de actividad en este órgano que parece preceder al fin de la vida. Este hallazgo indica que la consciencia todavía puede estar presente durante varios minutos después de que el resto del cuerpo deje de mostrar signo alguno de vida, es decir, descubrieron que incluso cinco minutos después de que el corazón de una persona deje de latir, sus células cerebrales o neuronas aún pueden funcionar.
Para llevar a cabo este descubrimiento, el equipo de investigadores liderados por el neurólogo Jens Drier monitorizó de manera continua las señales eléctricas en cerebros de nuev…

¿Cómo nos afecta el "agujero negro" del Sol?

Un 'agujero' grande y oscuro se ha abierto en la atmósfera del sol, lo que permite que los vientos solares salgan precipitadamente al espacio, algo habitual, pero espectacular.

El Observatorio de Dinámica Solar/SDO de la NASA capturó esta imagen ultravioleta del agujero coronal el 8 de noviembre. Estos amplios agujeros pueden abrirse en la atmósfera superior del sol, o corona, como resultado del campo magnético dinámico de la estrella.

Del mismo modo que los pliegues y dobleces del campo magnético pueden causar manchas solares y erupciones solares, también pueden abrir agujeros temporales en la corona. Al igual que el agujero en la capa de ozono en la Tierra, un orificio coronal no atraviesa la atmósfera del sol.Es simplemente una región que es más fría y menos densa que el plasma circundante.La apertura en el campo magnético permite que las partículas escapen mucho más rápido que en el viento solar normal, de acuerdo con el Centro de Predicción del Tiempo Espacial.

Estas co…

¿Una nueva edad de hielo?

El Sol se está quedando en silencio. En las últimas décadas, las machas solares han ido desapareciendo progresivamente de nuestra estrella favorita hasta lo que parece un mínimo histórico.

Las manchas solares son la forma con la que, desde hace más de 400 años, medimos y controlamos la actividad del Sol. Una actividad que, por lo que sabemos está íntimamente ligada a las temperaturas y las condiciones climatológicas de la vida en la Tierra. Por eso, la progresiva desaparición de manchas ha hecho que muchos expertos se pregunten qué está pasando y si es posible que nos estemos aproximando a una nueva edad del hielo.

Las manchas solares son regiones de la superficie solar con una temperatura más baja que sus alrededores. Es decir, son esas cosas negras que se ven en las fotos. Lo cierto es que, en realidad, no son negras sino más bien de un rojo brillante pero la diferencia de temperatura con el resto del sol hace que - por comparación - nos parezcan oscuras.

Desde 1610 o incluso antes, lo…